Press relase:      Download: pdfswissaerosolaward_2020_englisch.pdf630.24 kB   |  pdfZusammenfassung.Sauvageat_Zeder.pdf144.79 kB

The 10th Swiss Aerosol Award has been presented at the annual conference of the Swiss Aerosol Society November 3, 2020 to Dr. Lukas Durdina (EMPA and ZHAW) for his publications on particulate emissions of a business jet and to Eric Sauvageat (Uni Berne) and Yanik Zeder (Swisens AG) for their work on Real-time pollen monitoring using digital holography.

Dr. Lukas Durdina and his Co-authors first reported particulate matter emissions of a business jet aircraft measured according to a new international emissions standard

Business aviation is a relatively small but steadily growing and little investigated emissions source. Regarding emissions, aircraft turbine engines rated below 26.7 kN thrust are certified only for visible smoke and are excluded from the non-volatile particulate matter (nvPM) standard. Emissions data for small engines are lacking. As the demand for air travel surges, fuel burn from commercial aviation is expected to double in 40 the next 15 years. The fleet is even predicted to grow worldwide by 33% in the next 8 years.

Small plane - low emissions?

Despite the small aircraft size and relatively low fuel burn, the nvPM mass emission rates were up to a factor of 3 higher than previously reported for the Boeing 737 engines. We have shown here that a modern business jet may emit as much nvPM from airport operations as an airliner. The comparison with airliners at cruise altitude suggests that nvPM emissions from a business jet flight may be higher than those of an airliner. Expressed as a per-person burden (assuming 180 airliner passengers and 5 business jet passengers), the nvPM mass emissions are higher by a factor of 72 and the nvPM number emissions are higher by a factor of 24.

This study will serve for the development of emission inventories and the results could also be used in the regulatory framework for assessing the emissions certification requirements of small aircraft turbine engines

Durdina, L., Brem, B. T., Schönenberger, D., Siegerist, F., Anet, J. G., & Rindlisbacher, T. (2019). Nonvolatile Particulate Matter Emissions of a Business Jet Measured at Ground Level and Estimated for Cruising Altitudes. Environmental Science and Technology, 53(21), 12865–12872.

falcon award2020
Sunrise above the Falcon 900 EX with the exhaust sampling probe and instruments in place. Photo: Lukas Durdina.

As new real-time pollen monitoring devices emerge, there is a growing need for processing the large amount of measurement data in an accurate and efficient way. Eric Sauvageat and Yanik Zeder develop and validate a new algorithm to classify real-time particle measurements taken by the “Swisens Poleno”. This instrument is currently the only operational pollen monitoring device using digital holography.

To identify and classify the pollen particles measured by the Poleno, the holographic images are first used to separate pollen candidates from other particles based on their general shape. As a second step a machine learning algorithm was developed and trained by inserting known pollen particles in the device. The resulting dataset is then used on the unknown pollen grains to discriminate between the different taxa. This two-step procedure enabled the system to identify and classify 8 pollen types, whereby 6 of them had accuracies greater than 90%. In addition to the classification ability of the device, the authors also investigated the counting accuracy of the Poleno by performing controlled chamber experiments.

(Sauvageat, E., Zeder, Y., Auderset, K., Calpini, B., Clot, B., Crouzy, B., Konzelmann, T., Lieberherr, G., Tummon, F., and Vasilatou, K.: Real-time pollen monitoring using digital holography, Atmos. Meas. Tech., 13, 1539–1550,, 2020)


Frau Dr Giulia StefenelliPress relase:    Download: pdfSwissAerosolAward-2019_Giulia-Stefenelli.pdf58.7 kB

Dr. Giulia Stefenelli, PhD of ETH Zürich and researcher at the Paul Scherrer Institute in Würenlingen, has received yesterday in Berne the Swiss Aerosol Award 2019 for her excellent work about biomass burning*.

Giulia Stefenelli and coauthors present herein a new method to model the secondary organic aerosol (SOA) formation from complex emissions with a special focus on biomass burning. Biomass burning emissions from residential combustion are a major source of gaseous and particulate air pollution on urban, regional and global scales.

Here, using smog chamber measurements, the authors estimate the contribution of different precursor classes to the SOA formed during emission aging. They demonstrate that SOA yields of these precursor classes in complex emissions can largely be represented by yields determined using single precursors. For SOA yield calculations, they developed a new box model solved using advanced data science techniques.

This modelling framework may be generalizable for other complex emissions sources, enabling the determination of the contributions of different chemical classes at a level of complexity suitable for implementation in regional air quality models. The authors reveal the most important precursors in biomass burning emissions, and the modelling framework developed can be used to follow the evolution of their oxidation products in the particle phase, allowing a direct comparison with molecular composition measurements using recently developed chemical ionization mass spectrometers.

SOA production by most of these precursors has received little study so far; therefore, data analysis methods developed here suggest directions for future laboratory studies and a clear path for constraining SOA effects and supporting source specific mitigation policies.

*Secondary organic aerosol formation from smoldering and flaming combustion of biomass: a box model parametrization based on volatility basis set.


Giulia Stefenelli, Jianhui Jiang, Amelie Bertrand, Emily A. Bruns, Simone M. Pieber, Urs Baltensperger et al; Atmos. Chem. Phys., 19, 11461–11484, 2019;

Media Release     pdfpd_swissaerosolaward_2018.pdf99.65 kB

GDI engines are many times more dangerous to health than modern diesel vehicles
Award for research into the emission behavior of direct-injection gasoline vehicles (GDI)

This year's Swiss Aerosol Award in the amount of CHF 5,000 goes to Dr. Ing. Maria Muñoz of the Federal Materials Testing and Research Institute Empa. Dr. Muñoz has studied the emission behavior of so-called GDI engines (gasoline-direct injection).

The results are frightening:
The exhaust gases of the investigated vehicles, which are on the rise worldwide, contain up to 17 times more carcinogenic substances than those of modern diesel vehicles.

Medienmitteilung       Download: pdfPD_Swiss-Aerosol-Award_2017.pdf617.69 KB

Der diesjährige Swiss Aerosol Award in der Höhe von CHF 5000 geht an Prof. Reto Auer vom Berner Institut für Hausarztmedizin (BIHAM) und Universitätsklinik von Lausanne (PMU), welcher ein multidis-ziplinäres Team von Toxikologen und klinischen Forschern geleitet hat. In einer wissenschaftlichen Kommunikation, die am 22. Mai in der renommierten amerikanischen Zeitschrift JAMA-Internal Medicine erschienen ist, haben die Wissenschaftler des Instituts für Arbeitsgesundheit (IST – Institut de Santé au Travail) und der Universitätsklinik von Lausanne (PMU – Policlinique Médicale Universitaire) die Ergeb-nisse einer unabhängigen Studie über das elektronische Tabakheizsystem IQOS veröffentlicht.

Philip Morris International (PMI) lancierte vor kurzem den IQOS (I Quit Ordinary Smoking), einen Ziga-rettenhalter, der eine Mini-Zigarette auf 330 Grad Celsius erhitzt. Der Hersteller behauptet, dass IQOS keinen Rauch erzeuge, da der Tabak nur erhitzt statt verbrannt werde und es dabei kein Feuer gebe. Technisch gesehen könnte die Aussage, dass IQOS keinen Rauch abgibt, erlauben, das Rauchverbot in öffentlichen Räumen zu umgehen. In ihren Laborexperimenten haben die Wissenschaftler beobach-tet, dass IQOS Rauch erzeugt und Giftstoffe freigibt, die auch im Rauch einer herkömmlichen Zigaret-te enthalten sind. Diese sind für Tabakpyrolyseverfahren typisch und somit die Hauptquelle für toxi-sche Verbindungen im Tabakrauch. Für die Wissenschaftler sollte das Aerosol deshalb als Tabak-rauch angesehen und als solcher reglementiert werden. Sie fordern andere Forschungsgruppen auf, ihre Daten zu überprüfen.